ERI Design: IDEA and POSH Ethernet Controller Open Source IP Cores

CHINH LE LeWiz Communications, Inc.

IDEA and POSH Phase I Integration Exercise Detroit, MI

17 Jul 2019 – 19 Jul 2019

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

Open Session Slides

Program Overview (Open Session)

Development of 3 Open Source Ethernet controller (MAC) IP cores:

- Core 1: 10/100/1000Mbps
- Core 2: 10G/5G/2.5G/1Gbps
- Core 3: 100G/50G/40G/25G/10Gbps
- Designed for easy migration to SoC from FPGA emulation
- Unified architecture: Simpler interface, software driver, easy to migrate to different speed, different PHYs, suitable for small IoT to large applications
- Open source: but complete code, simulation bench, FPGA project, drivers, documentation, and support

CORE 1: 10/100/1000Mbps

CORE 2: 10G/5G/2.5G/1Gbps

CORE 3: 100G/50G/40G/25G/10Gbps

Verification: Test bench (complex and most time consuming)

Test Bench

NOTES:

- Bus models allows packet level testing
- Transmit and receive flows
- No vendor specific or technology dependent

Status

- APPROVED FOR RELEASE TO GITHUB
 - Released Core 1 and 2
 - Documentation (specs and usage), Instructions
 - Tests and results used in verification of IP cores in simulation, test benches
 - Github.com → search for LMAC CORE
 - You should see LMAC_CORE1 and LMAC_CORE2
- LICENSING open source hardware ecosystem
 - Access model open source (Github)
 - License using Lesser GPL 2.1

Future Plans (Open Session)

- Near term plan:
 - 3 months Core 3 architecture review and initial code release
 - 6 months Final Core 3 release with docs, simulation bench

Screenshot of Sim Script


```
OCHORA DIXERRI LESC TOURISC
  2 ## Copyright (C) 2018 LeWiz Communications, Inc.
  4 ## This library is free software; you can redistribute it and/or
  5 ## modify it under the terms of the GNU Lesser General Public
  6 ## License as published by the Free Software Foundation; either
 7 ## version 2.1 of the License, or (at your option) any later version.
  9\, ## This library is distributed in the hope that it will be useful,
 10 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 12 ## Lesser General Public License for more details.
 14 ## You should have received a copy of the GNU Lesser General Public
 15 ## License along with this library release; if not, write to the Free Software
 16 ## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 18 ## LeWiz can be contacted at: support@lewiz.com
19 ## or address:
 20 ## PO Box 9276
 21 ## San Jose, CA 95157-9276
22 ## www.lewiz.com
23 ##
 24 ##
         Author: LeWiz Communications, Inc.
         Language: Verilog
26 ##
27
28 <mark># 2</mark>
29 # 3
     source SCRIPTS/8_PKT/Script4_RxPath_Test_10G.txt
    # Script to test LMAC: test rx path, 64-bit mode (XGMII).
    # fmac speed: 000 = 10 Gig mode
                 101 = 5 Gig mode
                 010 = 2.5 Gig mode
                 001 = 1 Gig mode
   # rx pkt gen sel selects the source of the data on RxD and RxC. If 1 = data is from the rx pkt gen. If 0 = loopback data (TxD and TxC is sent to RxD and RxC).
 37 vsim work.axis lmac tb
 39 view wave
 40 do E:/LMAC2 INFO/waveforms/rx path test
 42 view -new wave
 43 add wave -r /*
 45 mem load -i E:/LMAC2_INFO/AXIS MASTER/memory_wr_data.txt -format hex /AXIS_LMAC_TB/axi_stream_master/memory_wr_module/memory_wr_data
 46 mem load -i E:/LMAC2 INFO/AXIS MASTER/memory wr ctrl.txt -format hex /AXIS LMAC TB/axi stream master/memory wr module/memory wr ctrl
 48 mem load -i E:/LMAC2 INFO/SCRIPTS/8 PKT/rx pkt gen data.mem -format hex /AXIS LMAC TB/phy emulator 10G/rx pkt gen 10G/rx pkt gen2kx64 inst/dram data/mem
 49 mem load -i E:/LMAC2 INFO/SCRIPTS/8 PKT/rx pkt gen ctrl.mem -format hex /AXIS LMAC TB/phy emulator 10G/rx pkt gen 10G/rx pkt gen2kx8 inst/dram ctrl/mem
 51 force -freeze sim:/AXIS LMAC TB/fmac speed 3'd0 0
 53 force -freeze sim:/AXIS_LMAC_TB/phy_emulator_10G/rx_pkt_gen_start_addr 64'd00 0
 54 force -freeze sim:/AXIS_LMAC_TB/phy_emulator_10G/rx_pkt_gen_read_cnt 11'd0 0
   # Select the rx pkt gen memory data
 a run 200ns
```

Screenshot of Modelsim – exec & results

Screenshot of Waveform Results

